


228 Midway LN, Suite B Oak Ridge, TN 37830 Phone: 865.813.1700 Fax: 865.813.1705 www.assuredbio.com

Detailed Description of ERMI Mold Species

An Assured Bio Labs White Paper Contributions were made by all of the following:

James Campbell, Ph.D., Senior Scientist Alisha Coffey, B.S., Molecular Analyst

Project Director Edward A. Sobek, Ph.D., Chief Science Officer

March 3, 2008

Table of Contents

Introduction	3	Scopulariopsis brevicaulis
Problem Statement	3	Scopulariopsis chartarum
revious Options	3	Stachybotrys chartarum
ne Assured Bio Solution	3	Trichoderma viride
plementation	3	Wallemia sebi
immary	3	
lternaria alternata	4	
spergillus flavus	4	
pergillus fumigatus	4	
spergillus niger	4	
spergillus ochraceus	5	
spergillus penicilloides	5	
reobasidium pullulans	5	
spergillus restrictus	5	
pergillus sclerotiorum	5	
remonium strictum	5	
pergillus sydowii	5	
pergillus unguis	6	
pergillus ustus	6	
pergillus versicolor	6	
adosporium cladosporioides	6	
aetomium globosum	6	
dosporium herbarum	7	
adosporium sphaerospermum	7	
rotium amstelodami	7	
icoccum nigrum	8	
cor amphibiorum	8	
nicillium brevicompactum	9	
nicillium chrysogenum	9	
nicillium corylophilum	9	
nicillium crustosum	9	
nicillium purpurogenum	10	
enicillium glabrum	10	
nicillium variabile	10	
aecilomyces variotii	10	
hizopus stolonifer	11	

Introduction

The Environmental Relative Moldiness Index (ERMI) contains 36 species specific DNA probes. Mold Specific Quantitative PCR (MSQPCR) is the method used to detect and quantify the ERMI mold species. MSQPCR and ERMI were developed via an intense research project conducted over a period of 10 years at the United States EPA.

Problem Statement

There is no definitive source that describes the ecology and/or medical significance of the mold (fungal) species contained in the ERMI panel.

Previous Options

Indoor air quality investigators had to comb through old journal articles, out-of-print mycology keys and texts, plus spend vast hours on the internet in order to find information on the species of molds that were present in the ERMI report. Unfortunately, much of the internet data cannot be verified and many species names have changed over the last decade.

The Assured Bio Solution

Provide an up to date description of all species and species groups present in the ERMI test panel

<u>Benefit 1</u>

All species descriptions are from peer-reviewed journals or up-to-date medical mycology texts.

<u>Benefit 2</u>

Mycological lineages were analyzed to ensure that ecological descriptions are traceable to each ERMI species or species group.

<u>Benefit 3</u>

All descriptions will be updated quarterly. Assured Bio's current ERMI/MSQPCR will be granted access to each updated version electronically.

Implementation

ERMI/MSQPCR clients may freely use the species descriptions to enhance their own reports. The descriptions can be pasted directly into their own inspection reports. Inspectors can also attach the verified electronic version as an appendix to their reports.

Current users of Assured Bio's ERMI and other MSQPCR panels will automatically receive a high-quality glossy hard copy of the species description. New clients or clients ordering their first ERMI test will automatically receive one high quality print copy via mail. A verified electronic version will always accompany ERMI/MSQPCR panel reports. In addition, current ERMI/MSQPCR clients will receive a high quality print with each quarterly update.

Summary

The vast wealth of data in the ERMI and other MSQPCR panels, coupled with definitive and detailed species descriptions, will considerably enhance the interpretation of ERMI/MSQPCR panels for the inspector and significantly improve discussion of the results among clients and remediation specialists, medical professionals, and litigation attorneys.

Aaltr

Alternaria alternata

This fungus can be found throughout the world on and in plants, soils, textiles and foods. A. alternata is among the most commonly observed molds in indoor environments, and its spores are released diurnally. It is found frequently in moist/humid areas such as watertanks and humidifiers. However, this species is also quite common in dry areas including dust from floors and This species produces mattresses. several allergens and mycotoxins (tenuazonic acid and altertoxins). Members of the genus Alternaria are known to cause asthma, sinusitis and infections of the eyes, ears and skin.

Aflav

Aspergillus flavus / oryzae

Isolates of *Aspergillus flavus* and *A*. morphologically orvzae are indistinguishable. A. flavus can be found virtually anywhere on Earth and has been isolated from dry areas in Chile, antarctic lakes, humidifiers, plants, insects, animals, leather, feathers, cotton fabrics, paintings, Distributions of A. flavus in etc. American soils are more dense in the southern U.S. A. flavus can produce aflatoxins under some circumstances. Aflatoxin B_1 is the most potent carcinogen (cancer-causing agent) known, and lethal doses of this compound are known to be extremely low in mice. In man, A. pulmonary flavus can cause aspergillosis and weakened patients can suffer from cutaneous, nasal and cerebral infections.

Afumi

Aspergillus fumigatus / Neosartorya fischeri Neosartorya fischeri is a heat-tolerant fungus that is common in soil and fruits and occasionally causes human infections. Aspergillus fumigatus is also heat-tolerant and found worldwide. A. fumigatus it is particularly dense in agricultural soils but is commonly isolated from house dust, garbage, compost, potted plants, humidifiers and HVAC systems, as well. More importantly, A. fumigatus is isolated commonly from human patients. In healthy humans, A. fumigatus is not a pathogen. However, this species can cause severe infections in humans with suppressed immune systems (e.g. those with preexisting illnesses taking or immunosuppressants). In such individuals, spores that are inhaled are not attacked efficiently by the host's immune system, and the spores could germinate and begin to invade host tissues.

Anigr

Aspergillus niger / awamori / foetidus / phoenicis

Species detected by this assay are morphologically similar and difficult to distinguish without molecular techniques, Aspergillus awamori is such as PCR. widespread in soils and on plants, and it has extensively been used for industrial applications and for food preparation. Some isolates of A. awamori have been found to produce the mycotoxin known as ochratoxin A, and it is possible that this fungus can cause subcutaneous infections. A. foetidus and *A. phoenicis* are soil fungi that are likely involved in natural decomposition. A. niger is a fungus that can be found in house dust, mattress dust. A. niger can also contaminate as spices foods such and onions. Importantly, A. niger is allergenic and can cause inner/outer ear infections and sinus infections.

Aochr1

Aspergillus ochraceus / ostianus

These species of *Aspergillus* can be found indoors and on foodstuffs (e.g. coffee and paprika). Both species produce ochratoxin A, but *A. ostianus* can also produce aflatoxin.

Apeni2

Aspergillus penicillioides

This fungal species is common in very dry conditions and can be isolated from dried fruits, spices, archives, furniture, carpets, house dust and clothing. It is also associated with dust mites and is known to be allergenic.

Apull

Aureobasidium pullulans

This fungal species is ubiquitous. Isolations are most common from plant leaves but have been successful from such diverse environments as humidifiers, house dust, mattress dust, forest soils, sand dunes, peat bogs, estuarine sediments, marine sediments and seawater. In British homes, airborne spores of this species increase sharply in winter months. Interestingly, A. pullulans does not appear to require high levels of nutrients commonly needed by other environmental microbes. This species is also extremely sensitive to heat, and can be found in highhumidity areas (e.g. window frames and bathrooms). This fungus is implicated rarely in human infections of the eyes and skin, and A. pullulans infections can be found in blood.

Arest

Aspergillus restrictus / caesillus / conicus Aspergillus restrictus is a fungus that is more likely to be isolated in cool and dry climates, which could explain its frequent occurrence in house dust. All three of these species are considered medically important, although infections are not widely documented.

Asclr

Aspergillus sclerotiorum

This species is found in tropical and subtropical soils across the world. *A. sclerotiorum* can produce ochratoxins and is known to cause infections of the ear, toenails and fingernails.

Astrc

Acremonium strictum

This species is a common inhabitant of soils worldwide and can be isolated from plant surfaces, fuel and fuel filters. Import in an indoor context, A. strictum is found widely in the atmosphere and is common observed on food and moist indoor surfaces (e.g. humidifiers). It is possible that moldy homes can show greater numbers of this species in winter months. A. strictum has caused infections in chemotherapy and Infections of blood, transplant patients. cerebrospinal fluid. eye, pulmonary, peritoneal, toenail and fingernail have been reported for this species, although they appear to be relatively rare. However. reports of infections by species of the genus Acremonium appear to be on the rise.

Asydo3

Aspergillus sydowii

This species is found in soils worldwide and has been isolated from plants, seeds, foods, leather, textiles and uranium mines. *A. sydowii* can produce mycotoxins know as sydowic acids and can cause fingernail and toenail infections and invasive aspergillosis.

Aungu

Aspergillus unguis

Very little is known about this fungal species. However, it has been found to cause fingernail and toenail infections.

Austs2

Aspergillus ustus

It is likely that A. ustus is one of the most widely spread species of It has been isolated Aspergillus. from diverse soils from around the world, salt marshes, estuaries, foods, bat caves and uranium mines. Sporulation of A. ustus is stimulated by light. This species produces several mycotoxins and has been responsible for endocarditis and infections of the lungs and skin. It is possible that infection by A. ustus is nosocomial, but diagnoses of this mycosis are rare.

Avers2-2

Aspergillus versicolor

As are most aspergilli, A. versicolor is extremely widespread in nature. However, this species tends to occupy the coldest regions of Aspergillus distributions, as well as deserts, peat bogs, estuarine sediments. compost, linoleum, chipboard, paintings, cheeses, spices, stored grains, house dust, mattress dust and rotting military equipment This species is in the tropics. extremely xerophilic and common in indoor environments, where its growth can cause moldy odors. A. versicolor is known to produce a carcinogenic compound known as sterigmatocystin. A. versicolor is

allergenic, and mycoses of this species include osteomyelitis and infections of the auditory canal, fingernails and toenails.

Cclad1 and Cclad2

Cladosporium cladosporioides svar. 1 and *Cladosporium cladosporioides* svar. 2

These two organisms are not currently recognized as individual species, and they cannot be differentiated using standard microscopic techniques. DNA sequencing projects seeking to devise rapid identification methods for fungal pathogens detected distinct DNA sequences in this species, and each is now recognized as a "sequevar." In essence, they cannot be identified correctly without the use of DNAbased technology, such as this quantitative PCR technique. Both sequevars represent common the most saprobe in the environment. This species generates many more spores under moist conditions than in dry conditions. C. cladosporioides is distributed worldwide in soils, air, house dust, mattress dust, on dairy products, textiles. food, plants, many aquatic environments, wood pulp and feathers. This species is allergenic and can form fungal balls in lungs, skin infections, keratitis, sinusitis, and infections of spinal fluid, fingernails and toenails.

Cglob

Chaetomium globosum

This fungus is isolated commonly from soil, decaying plants, seeds, food, estuarine environments and marine sediments. It has particular notoriety as a soft rot fungus and can be found on decaying wood, explaining its occurrence in indoor environments following water damage. In fact, *C. globosum* can be found growing on wallpaper in homes with extensive water damage. Sporulation of this fungus tends to occur more readily under dark conditions, and the spores produced are very resistant to

desiccation. While not particularly allergenic itself, its presence appears to enhance the allergic response of individuals to other allergens (e.g. This species has caused pollen). lung infections. invasive subcutaneous infections and fingernail and toenail infections. The genus *Chaetomium* appears to be emerging as important fungal pathogens.

Cherb

Cladosporium herbarum

This is a very common fungus in nature, and it can be isolated from dead/dying plants, soil, food, wheat, textiles, floor dust, mattress dust, seawater, uranium mines and paint. In fact, it is possible that C. herbarum is the most common Cladosporium in air samples and appears to be more prevalent in summer months in British homes. However, this species was found to cause food spoilage at refrigeration C. herbarum was temperatures. found to be strongly allergenic and produces an endotoxin that has similar health effects that to produced *Stachybotrys* by chartarum.

Cspha

Cladosporium sphaerospermum

most species As with of Cladosporium, C. sphaerospermum is common worldwide. This species can be isolated from plants, soil, food, paint, textiles, insulation, floor dust, mattress dust, humidifiers and from humans and other animals. Spores of this species are difficult to distinguish from those of С. cladosporioides microscopically, but DNA analyses easily distinguish

them. *C. sphaerospermum* is one of the most commonly isolated indoor air fungi. This species is allergenic and has caused documented bronchial lesions and subcutaneous skin infections.

Eamst

Eurotium (Aspergillus) amstelodami / chevalieri / herbariorum / rubrum / repens

This assay identifies a group of closely related *Eurotium* species. Most molds isolated from indoor environments are species. however some also asexual reproduce sexually. To discern these two modes or reproductive states, mycologists have devised a unique terminology. The term "anamorph" describes those molds that reproduce asexually; whereas, the term "teleomorph" describes molds that reproduce sexually. Anamorphic or asexual molds do not need a partner to reproduce, they produce their spores similar to budding yeast cells and do so on a grand scale; millions if not billions of spores are produced in a short period of time (24-48 Anamorphic reproduction is an hrs). evolutionary strategy that fires the conflict between humans and molds in homes and buildings; just add water to building materials, and mold will seem to appear out of nowhere and rapidly colonize the damp Teleomorphic molds, however, substrates. must find and fuse with a compatible partner or strain in order to produce spores sexually. Hence, teleomorphic molds are rare relative to anamorphic molds because the paring of compatible strains in the environment is governed by the laws of probability, and the probability of two microscopic strains meeting at any given location is remote. However, some teleomorphic species tend to commonly occur indoors.

The most common teleomorphic genus is *Eurotium*. *Eurotium* species are perhaps the most abundant sexually reproducing molds

7

found indoors. The kev to Eurotium's success lies in genetics, for *Eurotium's* asexual counterpart is Aspergillus. Aspergillus species produce enormous flushes of spores. Hence. Aspergillus spores are extremely common, especially in a water compromised building. The relative abundance of Aspergillus spores dramatically increases the probability that two compatible aspergilli strains will meet and fuse to form a teleomorphic Eurotium species. Thus, *Eurotium* has become an important mold genus, one that should not be ignored during indoor air quality assessments. This genus is xerophilic and has the ability to germinate and colonize substrates having minimal water activity. Eurotium is also a common food spoilage organism.

Eurotium has been implicated in health maladies. several Anamorphic forms of Eurotium various produce mycotoxins. Farmer's lung disease (FLD) is caused mainly by repeated exposure to moldy hay colonized by Eurotium *Eurotium* may be a species. respiratory allergic in susceptible individuals and can cause adverse health effects in children who attend school in buildings damaged by moisture.

Enigr

Epicoccum nigrum

One of the most commonly isolated indoor fungi, *E. nigrum* is also widely distributed in nature. It can be found growing in and on soils, sand, dead/decaying plant tissue, saline environments, textiles and moldy paper. At this time, *E. nigrum* is not known as a pathogen, but this species can cause skin allergies.

Muc1

Mucor amphibiorum / circinelloides / hiemalis / indicus / mucedo / racemosus / ramosissimus and Rhizopus azygosporus / homothalicus / microsporus / oligosporus / oryzae

The species of mold represented in this assay are all members of a broad class of fungi known as zygomycetes. Zygomycetes are primitive but fast growing fungi. They widely distributed in terrestrial are environments, where they break down plant debris in soil. However, many species are common environmental contaminants that can cause food spoilage, and a few are pathogens of plants, insects and humans. By all pathogenic definition. zygomycotic species will grow at 37°C, with the possible exception of the *M. circinelloides*.

The common genera that infect humans include Rhizopus, followed by Mucor, Rhizomucor, Absidia, Cunninghamella and Syncephalastrum. Underlying diseases in humans include cancer and leukemia, antibiotic or prednisone use, diabetes, deferoxamine and desferrioxamine therapy, transplantation, burn wounds and the associated forms of immunosuppressive therapies. The most common clinical form of zygomycosis is rhinocerebral disease followed by pulmonary. cutaneous/subcutaneous, gastrointestinal and disseminated disease. Mucor amphibiorum has not been reported in human infections. *Mucor* circinelloides has been reported as a rare cause of cutaneous infections in humans. *Mucor hiemalis* has been reported from a few cases of human cutaneous Mucor indicus (synonym: M. infection. rouxii) has been reported from human gastric and pulmonary infections, a case of

necrotizing fasciitis and reports of hepatic infection in a bone marrow transplant recipient who had ingested contaminated medicine. Mucor racemosus has been infrequently reported as a causative agent of animal and human zygomycosis. Rhizopus microsporus accounts for 10-15% of reported human cases and has been implicated in cellulitis, cutaneous infection, zygomycosis, gastrointestinal and infections. However, rhinocerebral forms of R. *microsporus* are rare. Rhizopus oryzae (synonym: R. arrhizus) is the most common causative agent of zygomycosis, accounting for 60% of the reported culture positive cases and nearly 90 percent of the rhinocerebral form of infection.

Pbrev

Penicillium brevicompactum / stoloniferum

P. stoloniferum is a relatively rarely occurring fungus found in soils and *P. stoloniferum* commonly foods. attacks poinsettias in Switzerland greenhouses but is not currently recognized as a health threat. P. *brevicompactum* is a common species worldwide and indoors, occurring in fruit juices, fresh herbs, wall paper, wood, paint, potted (particularly plants strong association). soils. floor dust. mattress dust, caves, freshwater and uranium mines. P. brevicompactum can be xerophilic but sensitive to high-salt conditions. This species also inhibits the growth of several species of soil bacteria, possibly through production of its several mycotoxins (e.g. ochratoxin). *P*. brevicompactum can be strongly allergenic, but it has not been implicated widely in human disease. However, *P. brevicompactum* has been isolated from a dog with fungal pneumonia and a deep organ infection in a human.

Pchry

Penicillium chrysogenum

This species is found worldwide but has earned most notoriety from its production of penicillin. In addition to soil distributions, it can be isolated from foods, plants, floor dust, mattress dust, wood, wall paper, paint, gypsum (as in wall board) artwork and occasionally optical lenses. It is considered a good indicator of water intrusion. Although this species is highly allergenic and can produce mycotoxins, Р. chrysogenum is not considered a common health risk. Nonetheless, infections of the eyes, heart tissue, skin and ears. cerebrospinal fluid have been documented.

Pcory

Penicillium corylophilum

This species is widely distributed, but it is found more frequently in warm climates. Isolations have been successful from soil, textiles and various foods. This species is thought to be relatively xerophilic and is likely more common in low-humidity conditions, probably explaining their isolation from wood and paint. At this time, *P. corylophilum* does not appear to be a human pathogen.

PenGrp2

Penicillium crustosum / camembertii / commune / echinulatum / solitum

P. crustosum is a common food contaminant, particularly common in seeds, nuts and apples. *P. crustosum* produces potent neurotoxins (penitrems and roquefortine) that can cause muscular tremors in individuals eating contaminated foods. *P. camemberti* is a mold commonly found in cheeses (camembert cheese) and

occasionally meats, where it can produce low levels of the mycotoxin cyclopiazonic acid. P. commune is commonly found indoors and on cheeses and meats. P. commune has been documented in pulmonary infections in dogs and can produce cyclopiazonic acid and possibly *P. echinulatum* is nephrotoxins. found most frequently on foods containing oils (e.g. margarine and cheese) but is also found indoors. P. *echinulatum* is capable of producing tremorgenic mycotoxins (territrems). P. solitum is commonly isolated from foods such as hard cheeses and some meats. *P. solitum* can produce mycotoxins (viridicatins) on such foods but does not appear to cause diseases in humans.

Ppurp

Penicillium purpurogenum

This is another example of a *Penicillium* with a worldwide distribution in soils. This species also occurs on foods, plants and occasionally on optical lenses. *P. purpurogenum* tends to grow in environments with low pH (acidic). A mycotoxin, known as rubratoxin, can be produced when growth occurs on foods. *P. purpurogenum* is not currently recognized as a pathogen, but it has caused a few pulmonary infections in humans and a systemic infection in a dog.

Pspin2

Penicillium glabrum / lividum /

purpurescens / spinulosum / thomii P. glabrum is a commonly occurring indoor fungus, but it can also be found contaminating foods (particularly fruit and fruit products) and growing in compost and

aggressively on computer diskettes in high humidity. P. glabrum also grows well on the corks of wine bottles and elicits allergic responses in individuals that work with wine corks. P. lividum is a relatively rare and non-pathogenic species of Penicillium and occurs mostly in northern latitudes. Р. purpurescens is a common inhabitant of soils and indoor environments (particularly greenhouses). P. purpurescens does not appear to be an overt pathogen, but it can be found in feed potentially toxic to poultry. P. spinulosum is distributed worldwide and is usually found associated with forest soils, flour-based foods and fruit products. *P*. spinulosum can grow on wet plasterboard, and such growth can yields mycotoxin production, the health effects of which are under debate. P. thomii is widely distributed in soils of temperate environments. Р. thomii does not appear to be pathogenic, given current data.

Pvarb2

Penicillium variabile

This species is widely distributed in soils and can also be found in seawater, fruit juices, paper and optical lenses. *P. variabile* appears to grow best at slightly acidic pH and does not tolerate high heat for long periods of time. This species produces ochratoxin A (among others) but is not currently known as a pathogen.

Pvari2

Paecilomyces variotii

This fungus is known to be heat resistant and can, therefore, be found most commonly in warm and arid environments. It is also very common in air, animal feed, seawater, wood pulp in paper mills, creosote-treated wood, walls, wallpaper, house dust, compost, leather, optical lenses, synthetic rubber, photographic paper, moldy cigars, ink, optical lenses, PVC and kerosene. *P. variotii* has been known as a pathogen in birds and mammals but also appears to be an important human pathogen and infects the heart, lungs, bones, spleen and soft tissue.

Rstol

Rhizopus stolonifer

This fungus has a worldwide distribution, occurring most densely in soils of warm climates. *R*. stolonifer is one of the most frequently observed indoor air fungi and commonly grows on foods (e.g. bread) and its spores can germinate on moist paper. It appears that growth is enhanced by slightly alkaline conditions. This species has caused occasional infections, but it is regarded not generally as an important pathogen.

SCbrv

Scopulariopsis brevicaulis / fusca

S. brevicaulis is the most common species of its genus and occurs worldwide and occurs in soils, floor dust. mattress dust. aquatic environments, compost, seawater, paper mill waste, wood pulp, textiles, paintings and uranium mines. S. fusca is also commonly isolated from soil, straw, paper and food. S. *brevicaulis* is regarded as moderately xerophilic, and it can produce toxic by-products of arsenic and mercury, becoming exceptionally dangerous when growing indoors on paints containing arsenic. S. brevicaulis is said to produce garlic- or ammonialike odors when growing indoors. S. brevicaulis attacks hairs and keratin, often leading to infections of the toenails and fingernails. However, it can also cause skin, lung and soft tissue infections. S. fusca is less frequently pathogenic than S.

brevicaulis, this species produces infections of the skin and fingernails and toenails.

SCchr

Scopulariopsis chartarum

Relatively little is known about *Scopulariopsis* chartarum, not to be confused with Stachybotrys chartarum. Scopulariopsis chartarum was first observed on wallpaper, but has also been found in soils. Growth on maple by this species results in a weakening of the wood. This species does not appear to be a human pathogen, but it has caused a systemic mycosis in a dog.

Stac

Stachybotrys chartarum

Stachybotrys chartarum is the quintessential black mold found in indoor environments. It is distributed worldwide, primarily found associated on decaying plant material. S. chartarum possesses a battery of enzymes linked to plant decomposition, making it a potent attacker of all forms of wood, paper and natural fibers (e.g. wool). Hence, it is an indicator of moisture commonly problems in homes and can be found growing on paper, wallpaper, wall board, wood and textiles. S. chartarum is not a common pathogen, in and of itself, but has garnered particular attention for its role in Sick Building Syndrome, due to its high production of mycotoxins (satratoxin G and H). Long-term exposure to such toxins can induce a myriad of health maladies, including dermatitis. rhinitis. nausea. depression, general malaise, headaches, sore throats, etc. S. chartarum has also been known to invade lung tissue.

Tviri

Trichoderma viride / atroviride / koningii

T. viride and *T. koningii* are cosmopolitan species and have been isolated from almost every environment. Soils, composts and

vegetables are common sources of these fungi, and cool and moist environments are preferred. Verv little is known about T. atroviride. T. viride can grow on linoleum and wallpaper, and is probably more commonly isolated from indoor environments in winter months. As a genus, Trichoderma can cause nosocomial (hospital acquired) mycoses from contaminated solutions. T. viride is allergenic and has caused keratitis, peritonitis, pulmonary infections and hematomas.

Wsebi

Wallemia sebi

This fungus is a very common indoor fungus and is commonly found airborne. It is xerophilic and osmophilic and can be found growing on substrates that would desiccate many other fungi. These substrates include rock salt, bacon, salted foods, jam, jellies, fruits, textiles, rotting paper, and mammals. *W. sebi* can also be found in floor dust, mattress dust, soil and hay. This species is allergenic and is known to colonize human lungs, bones and skin. However, *W. sebi* is not considered a serious pathogen.